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Abstract. We explain, with examples, the relationship between zeros of the partition 
function, analyticity and degeneracy of absolute magnitude of eigenvalues of the transfer 
matrix for statistical mechanical models. We show how to write down a polynomial 
representation of the partition function for any model with a two-sheet largest eigenvalue. 
We solve the staggered ice model representation of the q-state Potts model on a sequence 
of semi-infinite strips and show that for 0 < q < 4 the Potts model result is only projected 
out by special boundary conditions. The non-Potts part of the result is obtained for a 
4 x CO strip and gives Baxter’s antiferromagnetic critical curve. 

1. Introduction 

There have been many papers discussing the distribution of zeros of the partition 
function in the complex exponentiated temperature plane for statistical mechanical 
models (for a recent list see, e.g., Martin (1985a, b)). Unfortunately with the exception 
of the Ising model (Onsager 1944) results have been restricted to the finite lattice. In 
this paper we provide generic examples in which the thermodynamic limit is taken in 
one dimension and explain the relationship with the eigenvalues of the transfer matrix, 
their degeneracy and analytic or sheet structure (see, e.g., Phillips 1957) in the complex 
plane. 

These examples were obtained using some remarkable block diagonalisation proper- 
ties of the transfer matrix for the staggered ice model representation of the q-state 
Potts model (Baxter et al 1976). These properties are independently interesting since 
they explain the failure of the Bethe ansatz approach (Baxter 1982a) to solve the model 
for q = 1,2. 

In this paper ‘block diagonalisation’ of the transfer matrix will mean block 
diagonalisation by temperature-independent similarity transformations, which preserve 
the polynomial nature (see below) of matrix elements. A ‘dominant sub-block’ is one 
containing the subset of eigenvalues, one or another of which has the largest absolute 
magnitude at every point in the complex plane. 

The equivalence between the Potts model and the staggered ice model is well 
described in the literature (see Baxter (1982a), for instance). In the present paper we 
use the conventional Potts Hamiltonian 

H = - p  c S(C7,,Uj) 
lattice 
links 
ij 

(where mi are q-valued site variables) and we use the variable y = exp(P), the ice model 
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variable X = ( y  - l)/Jq, or the renormalised variable f = X / J q  interchangeably, 
depending on conditions of brevity and clarity. 

In the next section we present selected examples in a pedagogical format. We then 
return to explain how the block diagonalisation of the transfer matrix necessary for 
this presentation is achieved using new results on the staggered ice model. The exact 
solutions we obtain are written down explicitly in an appendix. 

2. Examples 

The first example we consider is a four-site-wide strip (medial lattice) staggered ice 
model or q-state Potts model (Baxter er a1 1976). The lattice is periodic in the four-site 
direction and, after a minor modification to the Baxter et a1 formulation (see later), 
translation symmetry and line conservation reduce the 16 x 16 two-layer transfer matrix 
(a straightforward generalisation of the homogeneous ice model version described by 
Baxter (1982a)) to an essential 4 x 4 matrix. This block diagonalises further after some 
work. The relevant eigenvalues for the Potts model lie in a 2 x 2 block with 

where A4 and B4 (the subscripts refer to lattice size) are dichromatic polynomials in 
q and the exponentiated temperature variable (see the appendix). 

The largest eigenvalue on the real axis for q = 4 is A + ,  so in this case the free energy 
is (see, for example, Schultz et a1 1964) 

A, = A4*dB4 (1) 

1 
lim InN= lim -ln(A~+A!!)=ln(A+). 
N-m N N - m N  

In order to make the zero distribution of the partition function 2 manifest we invoke 
the easily proven identity 

A ? + A , N =  n = l , N  n [ A l + e x p ( T ) A 2 ]  
( n = f , N - $  for N even) 

- n [ A:+A:+2 COS(T)A~A~] 
n = l .  N/2 

for any A l ,  A 2 .  So 

In A +  =-!- 1: ~ I I ( ~ [ ( A , ) ~ +  BJ+2 cosp [ ( A 4 ) 2 - B B 4 ] }  dp 
277 

(3) 

(4) 

which is the logarithm of an infinite polynomial with lines of zeros (on the loci 
( A + l =  1A-I) terminating at the zeros of the algebraic determinant B4 (see also Wood 
1985). 

Notice that the zeros for finite N lie on the same loci (equation (3)). Thus in a 
non-block diagonalised finite lattice case it is always possible, in principle, to choose 
boundary conditions for which the zeros still lie on these loci. In other cases the zeros 
converge to the loci as N - a ,  since 

Z ~ = C + A , N + C - A ! ! + C C ~ A ; = O  ( 5 )  
n 

(where C+ = C- since 2 is polynomial) when 
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The latter terms tend to zero as N+co and the identity is then satisfied when AJA, = 
exp[( i~(2n  + l ) / N ) ]  (integer n). This shows that finite lattice results can be used to 
give an image of the limiting distribution, in the sense that a finite set of points 
distributed on a smooth locus give an image of that locus. 

For example, figure 1 shows the zeros of the partition function for a q = 4-state 
4 x  32 medial lattice model (from Martin 1985b). Deviations from the limiting loci 
(from equation (4)) are undetectable, and in particular the endpoints of the distributions 
are indistinguishable from the zeros of B4 on this scale (except for tiny deviations 
visible at the left-hand ends of the unit circle loci). 

#- 
+ + 

+ +++ 

+ +  
+ + +++ 

+ + 

Re 

#@ 

+ + + %+ [ ++ 8;: ++ +++++ +++++++ 

Figure 1. Zeros of the partition function in the complex X plane for a 4 x 32 medial lattice 
q = 4  Potts model. In this and subsequent figures the scale is set by unit length of the 
positive real axis. 

The preceding analysis works for any model whose largest absolute magnitude 
eigenvalue at any point in the complex plane is always either one or other of a subset 
of two eigenvalues of the transfer matrix. In these cases it defines the relationship 
between zeros of the partition function, analyticity of the free energy and degeneracy 
of eigenvalues of the transfer matrix. 

Notice (for later use) that if A I  = C, A 2  = D with C and D polynomials in equation 
(3), then the logarithm of the infinite polynomial is 

In( C2+ D 2 + 2  cos p CD) dp 

and the zeros of the infinite polynomial form the (closed) boundary between these 
two regions. 

We have seen that finite lattice results give an image of the limiting distribution. 
Now we can alternatively regard the partition function 

where TM is the M-site periodic transfer matrix and ( 0 1  and Ip) represent some 
boundary conditions, as 

Z M X  N = Tr[( T”NBMI (8) 

(where T$ is the N-site matrix with boundary conditions given by (CUI and Ip)) .  From 
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this point of view then, the present N = CO zero distribution gives an image of the full 
thermodynamic limit distribution (which improves as M is increased). Of course, the 
analytic structure of eigenvalues of TN will in general be more complicated than the 
present case, as we will see in the next example. 

For a six-site-wide strip (and q = 4) the largest eigenvalues of the 64 x 64 two-layer 
transfer matrix are in a 3 x 3 block: 

where a3 = 1 and A,, B, and c6 are polynomials (see the appendix). The largest 
eigenvalue on the real axis is A, so 

It is easy to see that this is the logarithm of an infinite polynomial (but not so easy to 
explicitly represent it in this way). It is also easy to show that the zeros of the polynomial 
lie on loci corresponding to the degenerate absolute magnitude of the largest two 
eigenvalues (a straightforward generalisation of the two-sheet case above) and terminat- 
ing at zeros of the algebraic determinant B,. 

For finite N the zeros do not lie exactly on the locus due to the presence of the 
smaller third eigenvalue. For N = 32, however, the discrepancy is already very small 
(undetectable on the scale of figure 2, for example, where the relevant zeros of B6 in 
X at q = 4 are again indistinguishable from the endpoints of the distributions of zeros 
of the partition function for a 6 x 32 lattice). 

*+++ + $ /  + +  f T  ~ 

+ +  '= +* 
+ ++ 

Re 

Figure 2. Zeros for a 6 X 32 9 = 4 Potts model. 

The same analysis goes through for q > 4  (see the appendix) and for any model 
whose largest absolute magnitude eigenvalue at any point in the complex plane is 
always one or another of a subset of three eigenvalues of the transfer matrix. 

Results for q = 4 on 8 x 24 and 10 x 16 lattices are given in figures 3 and 4. The 
argument following equation ( 5 )  can be generalised to any number of sheets and 
comparison with other lattice sizes in the long direction suggest these results to be 
well converged to the loci of degenerate absolute magnitude of the largest eigenvalues. 
The number of branch points (which are zeros of the algebraic determinant) should 
not be confused with the number of sheets (equivalent to the number of distinct largest 
eigenvalues over the complex plane). 
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Figure 3. Zeros for an 8 x 24 q = 4 Potts model. 

ft+ 

+ 
+ 

+ 
: +  

++ 

+ +  
+ +  
+ + 

++++++ +++++ 
++ ++ 

+ ++ 
+ r + 

* ++++ 
+ 

.#+ .!+ 

+f + 
+ + 

We have not yet discussed how our diagonalised examples were obtained. We will 
see that they appear naturally following the resolution of some boundary problems 
for the 0 < q < 4 cases discussed in the next section. 

3. Method 

It has long been puzzled over (see, for example, Baxter 1982a) that the staggered ice 
model has not been solved at q = 2 (the Ising model) or even at q = 1. The problem 
is that the ice model spectrum at q = 1,2 has some eigenvalues which dominate in a 
finite region of the complex plane, but which are not associated with the Potts model 
(Baxter 1982b). 

The simplest q = 2 example is the cyclicly bounded two-site-wide strip. The largest 
eigenvalue is contained in a 2 x 2 block T2,  from which one readily obtains 

where S is a constant matrix. 
Now transfer matrices are usually formulated directly from an exponentiated 

Hamiltonian so that for real temperatures and finite lattices the matrix is positive 
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(Bellman 1960) and (by Perron’s theorem and analyticity) has a unique largest eigen- 
value which is the same function over the whole real line. In the ice model representa- 
tion (for 0 < q < 4) the matrix is not positive. In fact the transfer matrix (1 1) gives a 
free energy as in equation (6), which describes a model with a phase transition at the 
antiferromagnetic critical point (and its unphysical dual-the double zeros of the 
algebraic determinant are at y = -1 * d 2  and 1 * iJ2) but otherwise looks nothing like 
the Ising model. 

Considering the size of the system in the periodic direction some discrepancy from 
the Ising model is not surprising. However, a finite lattice calculation in which the 
non-trivial Potts boundary conditions (Baxter et a1 1976, Baxter 1982a) are applied gives 

( 4 ( T 2 ) N l P ) P o t t s =  ( ( Y + i ) ( Y  (12) 

whereas Tr[ ( T 2 ) N ] ,  of course, gives a finite lattice version of the boundary in equation 
(6). 

In this case, then, boundary conditions are not irrelevant in the thermodynamic 
limit (cf Baxter et af 1976). Specifically we have that 

So, as we have seen, any finite lattice zero distribution (from a given matrix) converges 
to the same pattern for sufficiently large lattices independent of boundary conditions 
unless, as here, part of a dominant sub-block is projected out. 

Now a discrepancy between large finite lattice distributions using Potts and periodic 
boundary conditions occurs again in the four-site strip case. Since the Potts bra and 
ket are trivial in X (Baxter 1982a) this again implies block diagonalisability of the 
transfer matrix (i.e. preserving polynomial matrix elements). Furthermore, the results 
obtained using Potts boundary conditions give zeros lying exactly on the Onsager locus 
(Fisher 1964). This is surprisingly rare for finite lattice results (Abe and Katsura 1970, 
Maillard and Rammal 1983) and suggests that the block projected out by the Potts 
boundaries is 2 x 2 (see above and, e.g., Stanley (1971)). 

Armed with this information it is relatively easy to construct by inspection a constant 
similarity transformation Fatrix S4 which block diagonalises the essential 4 x 4 transfer 
matrix T4 (S4 T4 S;’=  T4(2) where f4(2) is a block diagonal matrix given in the 
appendix), and in fact gives 

Generalising the elements of S,  to simple functions of q we quickly find that the full 
q-dependent transfer matrix block diagonalises in the same way (see the appendix). 
For q > 4 Perron’s theorem applies to the full transfer matrix and results using Potts 
and periodic boundaries converge to the same Potts model partition function (i.e. the 
Potts sub-block is dominant). For 0 < q < 4, however, the situation is similar to that 
for q = 2. 

Remarkably it turns out that the real (double) zeros of the algebraic determinant 
for the non-Potts sub-block give Baxter’s antiferromagnetic critical curves (Baxter 
1982b-see later). The points of degeneracy of the largest eigenvalue from each block 
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(the points of intersection of the analytic boundary of the free energy for the full ice 
model with the real axis) are also very close to Baxter's curves. 

Once again for a six-site strip the q = 2 finite lattice results indicate a 2 x 2 block 
projected out by the Potts bounds. Again it is relatively easy to construct a similarity 
transformation for the transfer matrix T6 which manifests this property. In this case, 
however, a generalised transformation only block diagonlises the q-dependent matrix 
to a 3 x 3 block. This is given in the appendix. 

Finite lattice results for larger lattices (e.g. eight and ten sites in the short direction) 
continue to demonstrate the block diagonalisability of the transfer matrix. Compare 
the periodic bound result for q = 3  on a 1 0 x 2 0  lattice (figure 5 )  with Potts bound 
results (figure 6 and, for example, Martin (1985a)). In the q = 2 case such results 

,i .+++'1' ' I + + ++ 

+ 
+ 

+ 

+ 
+ + 

+ 
++ '+++I+ + + + + +I + 

Figure 5. Zeros for a 10 x 20 ice model representation periodically bounded q = 3 staggered 
ice model. 
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Figure 6. Zeros for an 8 x 16 ice model representation Potts bounded (Baxter et al 1976) 
q = 3 Potts model. 
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continue to suggest that the Potts block is 2 x 2 (see Martin 1985b). Also, although 
we have not used the result in this section, it is worth noting that the Potts block in 
the q = 1 case is 1 x 1 (see the appendix). 

4. Discussion 

When Blote er al (1981) and Blote and Nightingale (1982) studied the q-state model 
numerically they used the Whitney polynomial approach (see their papers for 
references). However, for analytical work it seems that the present construction is 
preferable. For example Maillard (1985) gives a 3 x 3 matrix for the three-site conven- 
tional lattice strip which is effectively only fractionally larger than the four-site medial 
lattice strip for which the transfer matrix is 2 x 2. The key seems to be that the ice 
model representation has very favourable edge properties in the short direction. 

The ice model representation we use is that of Baxter er al (1976). However, their 
weighted seam procedure for the cyclicly bounded case obfuscates the translational 
symmetry of the transfer matrix. In the present work we associated an extra weight 
es’M(e-e’M) with every clockwise (anticlockwise) pointing arrow (i.e. in the periodic 
direction) on the medial lattice (where M is the width of the lattice in the periodic 
direction and cosh 0 = dq/2).  This does not alter the partition function, but greatly 
facilitates the block diagonalisation of the transfer matrix. 

Noting the limitations of the connection between the full ice model partition 
function and the Potts model (for 0 < q < 4) it is important to remember that Baxter’s 
critical curves (Baxter 1982a, b) were derived by this route. Fortunately a finite lattice 
analysis of two- to ten-site-wide strip lattices shows that a neighbourhood of the 
ferromagnetic critical point is entirely in the region dominated by the Potts subspace. 
This is not true in general of the antiferromagnetic region, which shows why Baxter’s 
curves contain more information than the Potts phase transition points (e.g. at q = 1). 

A recent letter by Wood (1985) conjectures the use of results such as those presented 
in this paper for obtaining exact information on the zero distribution in the full 
thermodynamic limit. The conjecture does not appear to be supported, however, 
inasmuch as the set of zeros for one semi-infinite lattice is not in general a subset of 
the zeros for a semi-infinite lattice of greater width (e.g. q = 4 in this paper). The Ising 
model is a special case because its zero distribution may already be determined on 
symmetry grounds (see, e.g., Martin 1985a). 

In this paper we have established the existence of a sub-block addressed by the 
Potts boundary conditions. It may now be possible to formalise the diagonalisation 
procedure and solve the model in this subspace with a Bethe ansatz. For q = 1 and 
q = 2 it is simply a matter of solving an incomplete set of simultaneous equations for 
the (similarity transformation) matrices which appropriately localise the boundary 
vectors. 

Our exact results (well represented, for instance, by the images of figure 1 and 
figure 2) disprove the conjecture of Maillard and Rammal(l983) that the zero distribu- 
tion for the q 3 4 Potts model is restricted to the circle (XI = 1. 
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Appendix 

For the sake of brevity in the present paper we have been largely unconcerned with 
the task of extracting statistical mechanical information from our specific results. 
Instead we include the exact solutions for the four-site and six-site medial lattice strip 
q-state models for reference. 

The dominant sub-block of the four-site strip two-layer transfer matrix for general 
q may be written 

m33 m34 

O :I 4qf4 + ( q - 1 ) m , ( 4  - 1)mn 
m21 (1 + f)* + ( q  - 1)m22 o 
0 0 
0 0 m43 m44 

f 4 ( d  = 

where the Potts sub-block is given by 

m, ,  = 32f5+24qf6+8q2i7+ q 3 f 8  

mlz = - ( f 2 + 6 f 3  +;( q + 32)f4+ 2(3q + 8)f '  + q ( q  + 12)R6+4&7 +$q3fS) 

m,, = 4mI2+ 16qf7 + 2q3f8 

mZ2 = 6 f 4 +  242' + 4( q + 7 ) f 6 +  8 ( q  + l ) f 7  + ( q 2 +  q + 1)R* 

(the Potts boundary conditions pick out (1 ff) '  at q = l ) ,  and the non-Potts block by 

m33 = 4 f 2 +  20f3 + ( q  + 32)f4+ 4qf5 

m34= 16P2+4(q+ 16)f3+32qf4+4q2f5 

q3 = f3 + 8 f 4 +  ( q  + 16)f' + 4qf6 

m4 = 4 f 3  + ( q  + 32)f4+ 2Oqf' + 4q2Z6. 

Some simple algebra then gives the objects (A4, B4, etc) discussed in the text. 

be written 
The Potts sub-block of the six-site strip two-layer transfer matrix for general q may 

4(1 +f)"+ ( 4  - 1)nlI ( 4  - 1)nlz ( 4  - l)n,3 
(q-2)n*, n22 n23 ) 
( 4  - 2, n31 n32 n33 

where 

n, , = -( 4 + 48% + ( 12q + 240)f2 + ( 120q + 640)f3 + (588q + 804)f4 

+(24q2+ 1776q -480)f5+ q(320q+ 1040)R6+(24q2+1776q-480)qf7 

+(588q+804)q2f8+(120q+640)q3f9  

+ (12q+240)q4f'0+48q'f11+4q6f12) 

+4(6642+220f3+495%4+(q+ 1)(792R5+924f6) 

+ ( q 2 +  q + 1)(792f7+495f8) + ( q 3 +  q 2 +  q +  1)220f9 

+ ( q 4 +  q 3 +  q2+  q +  1)(66f"+ 12%")+(q5+ q4+ q 3 +  q2+  q +  1)f") 

and the non-zero coefficients CLm in 

nrm = f'q'-2C;? 
i j  
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are given in table 1. Potts boundary conditions pick out the lower block at q = 2 and 
the upper element at q = 1 in this representation. Again the objects discussed in the 
text (A6,  B,, etc) may be simply derived from the above. 
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